158 research outputs found

    1082 Free-breathing single-shot DENSE myocardial strain imaging using deformable registration

    Get PDF
    Free-breathing scans are often desirable in patients who find breath-holding difficult. We present a new approach for free-breathing myocardial strain imaging with displacement-encoding (DENSE) [1]. It acquires images with a single-shot sequence and removes respiratory motion using deformable registration

    A feasibility study of hand kinematics for EVA analysis using magnetic resonance imaging

    Get PDF
    A new method of analyzing the kinematics of joint motion is developed. Magnetic Resonance Imaging (MRI) offers several distinct advantages. Past methods of studying anatomic joint motion have usually centered on four approaches. These methods are x-ray projection, goniometric linkage analysis, sonic digitization, and landmark measurement of photogrammetry. Of these four, only x-ray is applicable for in vivo studies. The remaining three methods utilize other types of projections of inter-joint measurements, which can cause various types of error. MRI offers accuracy in measurement due to its tomographic nature (as opposed to projection) without the problems associated with x-ray dosage. Once the data acquisition of MR images was complete, the images were processed using a 3D volume rendering workstation. The metacarpalphalangeal (MCP) joint of the left index finger was selected and reconstructed into a three-dimensional graphic display. From the reconstructed volumetric images, measurements of the angles of movement of the applicable bones were obtained and processed by analyzing the screw motion of the MCP joint. Landmark positions were chosen at distinctive locations of the joint at fixed image threshold intensity levels to ensure repeatability. The primarily two dimensional planar motion of this joint was then studied using a method of constructing coordinate systems using three (or more) points. A transformation matrix based on a world coordinate system described the location and orientation of a local target coordinate system. Future research involving volume rendering of MRI data focusing on the internal kinematics of the hand's individual ligaments, cartilage, tendons, etc. will follow. Its findings will show the applicability of MRI to joint kinematics for gaining further knowledge of the hand-glove (power assisted) design for extravehicular activity (EVA)

    EVA Glove Research Team

    Get PDF
    The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area

    Anomalous Coronary Arteries: Anatomic and Functional Assessment by Coronary and Perfusion Cardiovascular Magnetic Resonance in Three Sisters

    Get PDF
    Combined coronary and perfusion cardiovascular magnetic resonance was performed in three sisters with angina and suspected anomalous coronary arteries. Two sisters had anomalous coronary arteries passing between the aorta and right ventricular outflow tract and had abnormal myocardial perfusion. One sister had normal anatomy and perfusion. The combined approach identified the anatomy and functional significance of suspected anomalous coronary arteries

    Addiction Research Consortium: Losing and regaining control over drug intake (ReCoDe)—From trajectories to mechanisms and interventions

    Get PDF
    One of the major risk factors for global death and disability is alcohol, tobacco, and illicit drug use. While there is increasing knowledge with respect to individual factors promoting the initiation and maintenance of substance use disorders (SUDs), disease trajectories involved in losing and regaining control over drug intake (ReCoDe) are still not well described. Our newly formed German Collaborative Research Centre (CRC) on ReCoDe has an interdisciplinary approach funded by the German Research Foundation (DFG) with a 12-year perspective. The main goals of our research consortium are (i) to identify triggers and modifying factors that longitudinally modulate the trajectories of losing and regaining control over drug consumption in real life, (ii) to study underlying behavioral, cognitive, and neurobiological mechanisms, and (iii) to implicate mechanism-based interventions. These goals will be achieved by: (i) using mobile health (m-health) tools to longitudinally monitor the effects of triggers (drug cues, stressors, and priming doses) and modify factors (eg, age, gender, physical activity, and cognitive control) on drug consumption patterns in real-life conditions and in animal models of addiction; (ii) the identification and computational modeling of key mechanisms mediating the effects of such triggers and modifying factors on goal-directed, habitual, and compulsive aspects of behavior from human studies and animal models; and (iii) developing and testing interventions that specifically target the underlying mechanisms for regaining control over drug intake

    Differential effects of glucagon-like peptide-1 receptor agonists on heart rate

    Get PDF
    Abstract While glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are known to increase heart rate (HR), it is insufficiently recognized that the extent varies greatly between the various agonists and is affected by the assessment methods employed. Here we review published data from 24-h time-averaged HR monitoring in healthy individuals and subjects with type 2 diabetes mellitus (T2DM) treated with either short-acting GLP-1 RAs, lixisenatide or exenatide, or long-acting GLP-1 RAs, exenatide LAR, liraglutide, albiglutide, or dulaglutide (N\ua0=\ua01112; active-treatment arms). HR effects observed in two independent head-to-head trials of lixisenatide and liraglutide (N\ua0=\ua0202; active-treatment arms) are also reviewed. Short-acting GLP-1 RAs, exenatide and lixisenatide, are associated with a transient (1\u201312\ua0h) mean placebo- and baseline-adjusted 24-h HR increase of 1\u20133\ua0beats per minute (bpm). Conversely, long-acting GLP-1 RAs are associated with more pronounced increases in mean 24-h HR; the highest seen with liraglutide and albiglutide at 6\u201310\ua0bpm compared with dulaglutide and exenatide LAR at 3\u20134\ua0bpm. For both liraglutide and dulaglutide, HR increases were recorded during both the day and at night. In two head-to-head comparisons, a small, transient mean increase in HR from baseline was observed with lixisenatide; liraglutide induced a substantially greater increase that remained significantly elevated over 24\ua0h. The underlying mechanism for increased HR remains to be elucidated; however, it could be related to a direct effect at the sinus node and/or stimulation of the sympathetic nervous system, with this effect related to the duration of action of the respective GLP-1 RAs. In conclusion, this review indicates that the effects on HR differ within the class of GLP-1 RAs: short-acting GLP-1 RAs are associated with a modest and transient HR increase before returning to baseline levels, while some long-acting GLP-1 RAs are associated with a more pronounced and sustained increase during the day and night. Findings from recently completed trials indicate that a GLP-1 RA-induced increase in HR, regardless of magnitude, does not present an increased cardiovascular risk for subjects with T2DM, although a pronounced increase in HR may be associated with adverse clinical outcomes in those with advanced heart failure

    The FGLamide-Allatostatins Influence Foraging Behavior in Drosophila melanogaster

    Get PDF
    Allatostatins (ASTs) are multifunctional neuropeptides that generally act in an inhibitory fashion. ASTs were identified as inhibitors of juvenile hormone biosynthesis. Juvenile hormone regulates insect metamorphosis, reproduction, food intake, growth, and development. Drosophila melanogaster RNAi lines of PheGlyLeu-amide-ASTs (FGLa/ASTs) and their cognate receptor, Dar-1, were used to characterize roles these neuropeptides and their respective receptor may play in behavior and physiology. Dar-1 and FGLa/AST RNAi lines showed a significant reduction in larval foraging in the presence of food. The larval foraging defect is not observed in the absence of food. These RNAi lines have decreased for transcript levels which encodes cGMP- dependent protein kinase. A reduction in the for transcript is known to be associated with a naturally occuring allelic variation that creates a sitter phenotype in contrast to the rover phenotype which is caused by a for allele associated with increased for activity. The sitting phenotype of FGLa/AST and Dar-1 RNAi lines is similar to the phenotype of a deletion mutant of an AST/galanin-like receptor (NPR-9) in Caenorhabditis elegans. Associated with the foraging defect in C. elegans npr-9 mutants is accumulation of intestinal lipid. Lipid accumulation was not a phenotype associated with the FGLa/AST and Dar-1 RNAi lines

    Comparative evaluation of the treatment efficacy of suberoylanilide hydroxamic acid (SAHA) and paclitaxel in ovarian cancer cell lines and primary ovarian cancer cells from patients

    Get PDF
    BACKGROUND: In most patients with ovarian cancer, diagnosis occurs after the tumour has disseminated beyond the ovaries. In these cases, post-surgical taxane/platinum combination chemotherapy is the "gold standard". However, most of the patients experience disease relapse and eventually die due to the emergence of chemotherapy resistance. Histone deacetylase inhibitors are novel anticancer agents that hold promise to improve patient outcome. METHODS: We compared a prototypic histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), and paclitaxel for their treatment efficacy in ovarian cancer cell lines and in primary patient-derived ovarian cancer cells. The primary cancer cells were isolated from malignant ascites collected from five patients with stage III ovarian carcinomas. Cytotoxic activities were evaluated by Alamar Blue assay and by caspase-3 activation. The ability of SAHA to kill drug-resistant 2780AD cells was also assessed. RESULTS: By employing the cell lines OVCAR-3, SK-OV-3, and A2780, we established SAHA at concentrations of 1 to 20 μM to be as efficient in inducing cell death as paclitaxel at concentrations of 3 to 300 nM. Consequently, we treated the patient-derived cancer cells with these doses of the drugs. All five isolates were sensitive to SAHA, with cell killing ranging from 21% to 63% after a 72-h exposure to 20 μM SAHA, while four of them were resistant to paclitaxel (i.e., <10% cell death at 300 nM paclitaxel for 72 hours). Likewise, treatment with SAHA led to an increase in caspase-3 activity in all five isolates, whereas treatment with paclitaxel had no effect on caspase-3 activity in three of them. 2780AD cells were responsive to SAHA but resistant to paclitaxel. CONCLUSION: These ex vivo findings raise the possibility that SAHA may prove effective in the treatment of paclitaxel-resistant ovarian cancer in vivo
    corecore